Генеративное глубокое обучение. Творческий потенциал нейронных сетей - PDF

Скачать полную версию книги "Генеративное глубокое обучение. Творческий потенциал нейронных сетей - PDF"

Генеративное глубокое обучение. Творческий потенциал нейронных сетей - Дэвид Фостер
Генеративное моделирование — одна из самых обсуждаемых тем в области искусственного интеллекта. Машины можно научить рисовать, писать и сочинять музыку. Вы сами можете посадить искусственный интеллект за парту или мольберт, для этого достаточно познакомиться с самыми актуальными примерами генеративных моделей глубокого обучения: вариационные автокодировщики, генеративно-состязательные сети, модели типа кодер-декодер и многое другое.

Дэвид Фостер делает понятными и доступными архитектуру и методы генеративного моделирования, его советы и подсказки сделают ваши модели более творческими и эффективными в обучении. Вы начнете с основ глубокого обучения на базе Keras, а затем перейдете к самым передовым алгоритмам.
- Разберитесь с тем, как вариационные автокодировщики меняют эмоции на фотографиях.
- Создайте сеть GAN с нуля.
- Освойте работу с генеративными моделями генерации текста.
- Узнайте, как генеративные модели помогают агентам выполнять задачи в рамках обучения с подкреплением.
- Изучите BERT, GPT-2, ProGAN, StyleGAN и многое другое.


211
Просмотры
0
Лайкнули

Лицензии:

  • CC BY-NC-SA 3.0 PH
  • Ссылка автора не требуется

Поделиться в сетях

Информация о книге:

Комментарии (0) Добавить

Кликните на изображение чтобы обновить код, если он неразборчив
Комментариев пока нет. Ваш комментарий будет первым!